Основные принципы цифровой фильтрации

Embedder's life

Цифровые фильтры — это не страшно! Не, правда. (Часть 1)

Все началось с того, что другу друга моего друга потребовалась помощь с этими самыми фильтрами. Джедайскими путями слухи об этом дошли до меня, я отписался в комментариях к посту по ссылке. Вроде помогло. Ну, я надеюсь.

Эта история всколыхнула во мне воспоминания о третьем, что ли, курсе, когда я сам сдавал ЦОС, и подвигла написать статью для всех тех, кому интересно, как же работают цифровые фильтры, но кого закономерно пугают забористые формулы и психоделичные рисунки в серьезных статьях (я уже не говорю про учебники).

Вообще, по моему опыту, ситуация с учебниками описывается известной фразой про то, что за деревьями бывает не видно леса. И то сказать, когда тебя сходу начинают пугать Z-преобразованием и формулами с делением полиномов, которые часто бывают длиннее двух досок, интерес к теме иссякает крайне быстро. Мы же начнем с простого, благо для понимания происходящего совсем необязательно расписывать длинные комплексные выражения.

Итак, для начала несколько простых базовых понятий.

1. Импульсная характеристика.

Положим, у нас есть коробка с четырьмя выводами. Мы без понятия, что там внутри, но зато точно знаем, что два левых вывода — вход, а два правых — выход. Давайте попробуем подать на нее очень короткий импульс очень большой амплитуды и посмотрим, что будет на выходе. Ну а чего, все равно что внутри этого четырехполюсника — неясно, потому как его описывать — непонятно, а так хоть что-то увидим.

Тут надо сказать, что короткий (вообще говоря, бесконечно короткий) импульс большой (вообще говоря, бесконечной) амплитуды в теории называется дельта-функцией. К слову, самое смешное, что интеграл от этой бесконечной функции равен единице. Такая вот нормировка.

Так вот, то, что мы увидели на выходе четырехполюсника, подав на вход дельта-функцию, называется импульсной характеристикой этого четырехполюсника. Пока, правда, непонятно чем она нам поможет, но давайте сейчас просто запомним полученный результат и перейдем к следующему интересному понятию.

2. Свертка.

Если говорить коротко, то свертка — это математическая операция, сводящаяся к интегрированию произведения функций:

Обозначается, как видно, звездочкой. Также видно, что при свертке одна функция берется в своем «прямом» порядке, а вторую мы проходим «задом наперед». Разумеется, в более ценном для человечества дискретном случае свертка, как и всякий интеграл, переходит в суммирование:

Казалось бы, некая унылая математическая абстракция. Однако на самом деле свертка — пожалуй самое волшебное явление этого мира, по удивительности уступающее разве только появлению человека на свет, с той лишь разницей, что откуда берутся дети большинство людей узнает в самом крайнем случае годам к восемнадцати, в то время как про то, что такое свертка и чем она полезна и удивительна, огромная часть населения Земли совершенно не догадывается всю свою жизнь.

Так вот, мощь этой операции заключается в том, что если f — любой произвольный входной сигнал, а g — импульсная характеристика четырехполюсника, то результат свертки этих двух функций будет аналогичен тому, что мы получили бы, пропустив сигнал f через этот четырехполюсник.

3. Фильтры.

С импульсной характеристикой и сверткой можно творить много интересного. Например, если сигнал звуковой, можно организовывать реверберацию, эхо, хорус, флэнджер и много, много другого; можно дифференцировать и интегрировать… В общем, творить что угодно. Для нас же сейчас важнее всего то, что, разумеется, с помощью свертки так же легко получаются и фильтры.

Собственно цифровой фильтр и есть свертка входного сигнала с импульсной характеристикой, соответствующей желаемому фильтру.

Но, разумеется, импульсную характеристику надо как-то получить. Мы, конечно, выше уже разобрались как ее померять, но в такой задаче толку в этом немного — если мы уже собрали фильтр, зачем еще что-то мерять, можно использовать его как есть. Да и, кроме того, самая главная ценность цифровых фильтров состоит в том, что они могут иметь характеристики, недостижимые (или очень трудно достижимые) в реальности — например, линейную фазу. Так что тут промерять вообще никак, надо просто считать.

4. Получение импульсной характеристики.

В этом месте в большинстве публикаций по теме авторы начинают вываливать на читателя горы Z-преобразований и дробей из полиномов, запутывая его окончательно. Я не буду этого делать, просто кратко поясню, к чему все это и почему на практике для прогрессивной общественности оно не сильно необходимо.

Предположим, мы определились, чего хотим от фильтра, и составили уравнение, которое его описывает. Далее, чтобы найти импульсную характеристику, можно подставить в выведенное уравнение дельта-функцию и получить искомое. Единственная проблема состоит в том, как это сделать, ибо дельта-функция во временной области задается хитрой системой, и вообще там всякие бесконечности. Так что на этом этапе все оказывается страшно непросто.

Вот здесь, бывает, и вспоминают, что существует такая штука как преобразование Лапласа. Само по себе оно не фунт изюму. Единственной причиной того, что его терпят в радиотехнике, как раз и является тот факт, что в пространстве того аргумента, переходом к которому является это преобразование, некоторые вещи действительно становятся проще. В частности, очень легко выражается та самая дельта-функция, которая доставляла нам столько хлопот во временной области — там это просто единица!

Z-преобразование (aka преобразование Лорана) — версия преобразования Лапласа для дискретных систем.

То есть, применив преобразование Лапласа (или Z-преобразование, по необходимости) к функции, описывающей желаемый фильтр, подставив в полученное единицу и преобразовав обратно, мы получим импульсную характеристику. Звучит легко, желающие могут попробовать. Я не рискну, ибо, как уже было сказано, преобразование Лапласа — суровая вещь, особенно обратное. Оставим его на крайний случай, а сами поищем какие-нибудь более простые способы получения искомого. Их есть несколько.

Во-первых, можно вспомнить про еще один удивительный факт природы — амплитудно-частотная и импульсная характеристики связаны между собой добрым и знакомым преобразованием Фурье. Это значит, что мы можем нарисовать любую АЧХ на свой вкус, взять от нее обратное преобразование Фурье (хоть непрерывное, хоть дискретное) и получить импульсную характеристику той системы, что ее реализует. Это просто потрясающе!

Тут, правда, не обойдется без проблем. Во-первых, импульсная характеристика, которую мы получим, скорее всего будет бесконечной (не буду пускаться в объяснения почему; так устроен мир), так что нам придется волевым решением обрезать ее в какой-то точке (положив равной нулю дальше этой точки). Но это не пройдет просто так — следствием этого, как и следует ожидать, будут искажения АЧХ рассчитанного фильтра — она станет волнистой, а частотный срез размоется.

Для того, чтобы минимизировать эти эффекты, к укороченной импульсной характеристике применяются различные сглаживающие оконные функции. В результате АЧХ обычно размывается еще больше, зато исчезают неприятные (особенно в полосе пропускания) осцилляции.

Собственно, после такой обработки мы получаем рабочую импульсную характеристику и можем строить цифровой фильтр.

Читайте также:  Сетевой фильтр pilot мощность

Второй метод рассчета еще проще — импульсные характеристики наиболее популярных фильтров давно выражены в аналитическом виде за нас. Остается только подставить свои значения и применить к результату оконную функцию по вкусу. Так что можно даже не считать никаких преобразований.

Ну и, конечно, если стоит цель эмулировать поведение какой-то конкретной схемы, можно получить ее импульсную характеристику в симуляторе:

imp_sim

Здесь я подал на вход RC-цепи импульс напряжением 100500 вольт (да, 100.5 кВ) длительностью 1 мкс и получил ее импульсную характеристику. Понятно, что в реальности такого не сделать, но в симуляторе этот метод, как видно, прекрасно работает.

5. Примечания.

Вышесказанное насчет укорочения импульсной характеристики относилось, конечно, к т.н. фильтрам с конечной импульсной характеристикой (FIR/КИХ-фильтрам). Они обладают кучей ценных свойств, включая линейную фазу (при определенных условиях построения импульсной характеристики), которая дает отсутствие искажений сигнала при фильтрации, а также абсолютную стабильность. Есть и фильтры с бесконечной импульсной характеристикой (IIR/БИХ-фильтры). Они менее ресурсоемки в смысле рассчетов, но уже не имеют перечисленных преимуществ.

В следующей статье я надеюсь разобрать простой пример практической реализации цифрового фильтра.

Источник



Основные принципы цифровой фильтрации

В данном разделе рассматривается простейший, наиболее изученный и внедренный класс систем дискретной обработки сигналов – так называемые линейные стационарные цифровые фильтры.

Выполняя, подобно аналоговым цепям, операцию частотной фильтрации, цифровые фильтры (ЦФ) обладают рядом существенных преимуществ. Сюда относятся, например, высокая стабильность параметров, возможность получать самые разнообразные формы АЧХ и ФЧХ. Цифровые фильтры не требуют настройки и легко реализуются на ЭВМ программными методами.

Принцип цифровой фильтрации.На рис.14.1 приведена основная структурная схема цифровой обработки сигналов.

Рис.14.1. Структурная схема цифровой обработки непрерывных сигналов.

Непрерывный входной сигнал x(t) поступает в аналого-цифровой преобразователь (АЦП), управляемый синхронизирующими импульсами от генератора, задающего частоту дискретизации. В момент подачи синхронизирующего импульса на выходе АЦП возникает сигнал, отображающий результат измерения мгновенного значения входного колебания в виде двоичного числа с фиксированным количеством разрядов. В зависимости от особенности построения устройства этому числу соответствует либо последовательность коротких импульсов (передача в последовательном коде), либо совокупность уровней напряжений на сигнальных шинах отдельных разрядов (передача в параллельном коде). Преобразованный таким образом сигнал поступает в основной блок устройства, так называемый цифровой процессор, состоящий из арифметического устройства и устройства памяти. Арифметическое устройство выполняет над цифрами ряд операций, таких, как умножение, сложение и сдвиг во времени на заданное число интервалов дискретизации. В устройстве памяти может храниться некоторое количество предшествующих отсчетов входного и выходного сигналов, которые необходимы для выполнения операций обработки.

Цифровой процессор преобразует поступающие в него числа в соответствии с заданным алгоритмом фильтрации и создает на выходе последовательность двоичных чисел, представляющих выходной сигнал. Если в дальнейшем необходимо иметь информацию в аналоговой форме, то используется цифро-аналоговый преобразователь (ЦАП). Однако это устройство может отсутствовать, если сигналы подвергаются только цифровым преобразованиям.

Характеристики и свойства цифровых фильтров. Алгоритм линейной цифровой фильтрации.

Алгоритм

Математическая теория цифровых фильтров переносит на случай дискретных сигналов все основные положения теории линейных систем, преобразующих непрерывные сигналы.

Как известно, линейная стационарная система преобразует непрерывный входной сигнал x(t) таким образом, что на ее выходе возникает колебание y(t),равное свертке функции x(t) и импульсной характеристики h(t):

Линейный цифровой фильтр, по определению, есть дискретная система (физическое устройство или программа для компьютера), которая преобразует последовательность числовых отсчетов входного сигнала в последовательность отсчетов выходного сигнала:

Линейный цифровой фильтр обладает тем свойством, что сумма любого числа входных сигналов, умноженных на произвольные коэффициенты, преобразуется в сумму его откликов на отдельные слагаемые, т.е. из соответствий

При любых коэффициентах

Для того, чтобы обобщить формулу (14.3) на случай дискретных сигналов, вводят понятие импульсной характеристики ЦФ. По определению, она представляет собой дискретный сигнал , который является реакцией ЦФ на «единичный импульс» (1,0,0,0,…):

Линейный ЦФ стационарен, если при смещении входного единичного импульса на любое число интервалов дискретизации импульсная характеристика смещается таким же образом, не изменяясь по форме. Например:

Рассмотрим, каким образом из свойств линейности и стационарности вытекает наиболее общий алгоритм линейной цифровой фильтрации. Пусть

— некоторый сигнал на входе ЦФ с известной импульсной характеристикой. Используя соотношения (14.5) и (14.7), можно записать m –й отсчет выходного сигнала :

Формула (14.8), играющая ведущую роль в теории линейной цифровой фильтрации, показывает, что выходная последовательность есть дискретная свертка входного сигнала и импульсной характеристики фильтра. Смысл этой формулы прост и нагляден: в момент каждого отсчета ЦФ проводит операцию взвешенного суммирования всех предыдущих значений входного сигнала, причем роль последовательности весовых коэффициентов играют отсчеты импульсной характеристики. Иными словами, ЦФ обладает некоторой «памятью» по отношению к прошлым входным воздействиям.

Практический интерес представляют лишь физически реализуемые ЦФ, импульсные характеристики которых не могут стать отличными от нуля в отсчетных точках, предшествующих моменту подачи входного импульса. Поэтому для физически реализуемых фильтров коэффициенты обращаются в нуль и суммирование в (14.8) можно распространить на все положительные значения индекса k:

Расчет важнейшей характеристики ЦФ – частотного коэффициента передачи – удобно проводить, используя методы z-преобразований. Сопоставим дискретным сигналам , , их z-преобразования X(z), Y(z), H(z) соответственно. Выходной сигнал фильтра есть свертка входного сигнала и импульсной характеристики, поэтому [см. формулы (5.15)] выходному сигналу отвечает функция

Системной функцией стационарного линейного ЦФ называется отношение z-преобразования выходного сигнала к z-преобразованию сигнала на входе. Соотношение (14.10) устанавливает, что системная функция фильтра

Источник

Цифровой фильтр

Цифровой фильтр — в электронике любой фильтр, обрабатывающий цифровой сигнал с целью выделения и/или подавления определённых частот этого сигнала. В отличие от цифрового, аналоговый фильтр имеет дело с аналоговым сигналом, его свойства недискретны, соответственно передаточная функция зависит от внутренних свойств составляющих его элементов.

Содержание

Применения

Цифровые фильтры на сегодняшний день применяются практически везде, где требуется обработка сигналов, в частности в спектральном анализе, обработке изображений, обработке видео, обработке речи и звука и многих других приложениях.

Характеристика цифровых фильтров

Линейный стационарный цифровой фильтр характеризуется передаточной функцией. Передаточная функция может описать, как фильтр будет реагировать на входной сигнал. Таким образом, проектирование фильтра состоит из постановки задачи (например, фильтр восьмого порядка, фильтр нижних частот с конкретной частотой среза), а затем производится расчет передаточной функции, которая определяет характеристики фильтра .

H(z) = \frac<B(z) data-lazy-src=

Недостатки

Недостатками цифровых фильтров по сравнению с аналоговыми являются:

  • Трудность работы с высокочастотными сигналами. Полоса частот ограничена частотой Найквиста, равной половине частоты дискретизации сигнала. Поэтому для высокочастотных сигналов применяют аналоговые фильтры, либо, если на высоких частотах нет полезного сигнала, сначала подавляют высокочастотные составляющие с помощью аналогового фильтра, затем обрабатывают сигнал цифровым фильтром.
  • Трудность работы в реальном времени — вычисления должны быть завершены в течение периода дискретизации.
  • Для большой точности и высокой скорости обработки сигналов требуется не только мощный процессор, но и дополнительное, возможно дорогостоящее, аппаратное обеспечение в виде высокоточных и быстрых ЦАП и АЦП.

Виды цифровых фильтров

КИХ-фильтры

Фильтр с конечной импульсной характеристикой (нерекурсивный фильтр, КИХ-фильтр) — один из видов электронных фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Знаменатель передаточной функции такого фильтра — некая константа.

БИХ-фильтры

Фильтр с бесконечной импульсной характеристикой (рекурсивный фильтр, БИХ-фильтр) — электронный фильтр, использующий один или более своих выходов в качестве входа, то есть образует обратную связь.Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид. Такие фильтры могут быть как аналоговыми так и цифровыми.

Способы реализации цифровых фильтров

Различают два вида реализации цифрового фильтра: аппаратный и программный. Аппаратные цифровые фильтры реализуются на элементах интегральных схем, тогда как программные реализуются с помощью программ, выполняемых ПЛИС, процессором или микроконтроллером. Преимуществом программных перед аппаратным является лёгкость воплощения, а также настройки и изменений, а также то, что в себестоимость такого фильтра входит только труд программиста. Недостаток — низкая скорость, зависящая от быстродействия процессора, а также трудная реализуемость цифровых фильтров высокого порядка.

См. также

Литература

    and R.W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, 1978.
  • S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice-Hall, 1996.
  • Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Second Edition, 1999, California Technical Publishing Цифровые фильтры. — М. :Советское радио. 1980.
  • Рабинер Л.Р., Гоулд В. Теория и применение цифровой обработки сигналов. М.: Мир, 1978.

Ссылки

  • Цифровая обработка сигналов
  • Фильтрация

Wikimedia Foundation . 2010 .

Смотреть что такое «Цифровой фильтр» в других словарях:

Фильтр — получить на Академике активный купон Krawt или выгодно фильтр купить по низкой цене на распродаже в Krawt

цифровой фильтр — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN digital filter … Справочник технического переводчика

цифровой фильтр — skaitmeninis filtras statusas T sritis automatika atitikmenys: angl. digital filter vok. Digitalfilter, n; diskretes Filter, n rus. цифровой фильтр, m pranc. filtre digital, m; filtre numérique, m … Automatikos terminų žodynas

цифровой фильтр — 3.28 цифровой фильтр (digital filter): Подмножество дискретных фильтров, которое использует оцифрованные выборки входных данных. Источник … Словарь-справочник терминов нормативно-технической документации

Цифровой фильтр — Электрический фильтр, в котором для выделения одних и подавления других частотных составляющих сложных электрических колебаний используются цифровые вычислительные устройства … Большая советская энциклопедия

гребенчатый цифровой фильтр — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN multipath digital filter … Справочник технического переводчика

Фильтр — Фильтр (от лат. filtrum «войлок»)  понятия, устройства, механизмы, выделяющие (или удаляющие) из исходного объекта некоторую часть с заданными свойствами. Содержание 1 Фильтры жидкости 2 Фильтры газа … Википедия

Фильтр с конечной импульсной характеристикой — (Нерекурсивный фильтр, КИХ фильтр) или FIR фильтр (FIR сокр. от finite impulse response  конечная импульсная характеристика)  один из видов линейных цифровых фильтров, характерной особенностью которого является ограниченность по времени … Википедия

Цифровой — 4. Цифровой Определение, относящееся к данным, которые состоят из цифр Источник: ГОСТ 15971 90: Системы обработки информации. Термины и определения оригинал документа Смотри также родственные термины … Словарь-справочник терминов нормативно-технической документации

Фильтр (информатика) — У этого термина существуют и другие значения, см. Фильтр. Фильтр (фильтрация) в информатике имеет несколько значений: Фильтрация данных вывод нужных пользователю данных, в результате созданного им запроса. Фильтр в растровом графическом редакторе … Википедия

Фильтр (значения) — * Фильтрация процесс очистки жидкости или газа от механических примесей. * Фильтр (электроника) устройство для выделения желательных компонент спектра аналогового сигнала и подавления нежелательных. * Цифровой фильтр устройство для обработки… … Википедия

Источник

Принцип работы цифрового фильтра

Цифровые фильтры (Лекция)

По виду импульсной характеристики цифровые фильтры делятся на два больших класса:

· Фильтры с конечной импульсной характеристикой (КИХ — фильтры, трансверсальные фильтры, нерекурсивные фильтры). Знаменатель передаточной функции таких фильтров — некая константа.

КИХ — фильтры характеризуются выражением:

· Фильтры с бесконечной импульсной характеристикой (БИХ — фильтры, рекурсивные фильтры) используют один или более своих выходов в качестве входа, то есть образуют обратную связь. Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид.

БИХ — фильтры характеризуются выражением:

Отличие КИХ – фильтров от БИХ – фильтров заключается в том, что у КИХ – фильтров выходная реакция зависит от входных сигналов, а у БИХ – фильтров выходная реакция зависит от текущего значения.

Импульсная характеристика – это реакция схемы на единичный сигнал.

Е диничный сигнал определяется следующим образом:

Таким образом, единичный сигнал только в одной точке равен единице – в точке начала координат.

Задержанный е диничный сигнал определяется следующим образом:

Таким образом, задержанный единичный сигнал задерживает на k периодов дискретизации.

Сигналы и спектры

Дуальность (двойственность) представления сигналов.

Все сигналы можно представить во временной или частотной плоскости.

Причем, частотных плоскостей – несколько.

Для просмотра сигнала во временной плоскости существует прибор:

Представим, что здесь есть достаточно длинный синусоидальный сигнал (в 1 сек. 1000 раз повторилась синусоида):

Возьмем сигнал с частотой, в два раза больше:

Сложим эти сигналы. Получим не синусоиду, а искаженный сигнал:

Преобразования из временной плоскости в частотную плоскость производятся с помощью преобразований Фурье.

Для просмотра сигнала в частотной плоскости существует прибор:

Частота циклическая или круговая ( f ).

Частотная плоскость покажет засечку:

Величина засечки пропорциональна амплитуде синусоиды, а частота:

Для второго сигнала частотная область покажет другую засечку:

Во временной области суммарного сигнала появится 2 засечки:

Оба представления сигнала равноценны и пользуются либо первым, либо другим представлением, в зависимости от того, какой удобней.

Преобразования из временной плоскости в частотную плоскость может производиться различными путями. Например: с помощью преобразований Лапласа или с помощью преобразований Фурье.

Три формы записи рядов Фурье.

Существует три формы записи рядов Фурье:

· Синус — косинусная форма .

1.) В синус — косинусной форме ряд Фурье имеет вид:

Входящие в формулу кратные частоты 1 называются гармониками; гармоники нумеруются в соответствии с индексом k ; частота ωk = 1называется k-й гармоникой сигнала.

Читайте также:  Замена масла в АКПП Прадо 120 последовательность

Это выражение говорит о следующем: что любую периодическую функцию можно представить в виде суммы гармоник, где:

где T – период повторений этой функции;

ω — круговая частота .

где t – текущее время;

При разложении по Фурье самое главное – это периодичность. За счет неё происходит дискретизация по частоте, начинается некоторое количество гармоник.

Для того, чтобы установить возможность тригонометрического разложения для заданной периодичной функции, нужно исходить из определенного набора коэффициентов. Прием для их определения придумал во второй половине XVIII века Эйлер и независимо от него в начале XIX века — Фурье.

Три формулы Эйлера для определения коэффициентов:

Формулы Эйлера не нуждаются ни в каких доказательствах. Эти формулы точные при бесконечном количестве гармоник. Ряд Фурье – усеченный ряд, т.к. нет бесконечного количества гармоник. Коэффициент усеченного ряда вычисляется по тем же формулам, что и для полного ряда. В этом случае, средняя квадратичная ошибка – минимальна.

Мощность гармоник падает с увеличением их номера. Если добавить/отбросить некоторые гармонические составляющие, то перерасчет остальных членов (других гармоник) не требуется.

Практически все функции являются четными или нечетными:

Например , функция Cos :

Четная функция симметрична относительно

Если функция четная, то все синусные коэффициенты bk будут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые.

Например , функция Sin :

Нечетная функция симметрична относительно центра.

Если функция нечетная, то все косинусные коэффициенты ak будут равны нулю и в формуле ряда Фурье будут присутствовать только синусные слагаемые.

2.) Вещественная форма записи ряда Фурье.

Некоторое неудобство синусно-косинусной формы ряда Фурье состоит в том, что для каждого значения индекса суммирования k (т.е. для каждой гармоники с частотой 1) в формуле фигурирует два слагаемых – синус и косинус. Воспользовавшись формулами тригонометрических преобразований, сумму этих двух слагаемых можно трансформировать в косинус той же частоты с иной амплитудой и некоторой начальной фазой:

Если S ( t ) является четной функцией, фазы φ могут принимать только значения 0 и π , а если S ( t ) — функция нечетная, то возможные значения для фазы φ равны + π /2.

Если bk = 0, тогда tg φ = 0 и угол φ = 0

Если ak = 0, тогда tg φ – бесконечен и угол φ =

В этой формуле может быть и минус (смотря какое направление взято).

3.) Комплексная форма записи ряда Фурье.

Данная форма представления ряда Фурье является, пожалуй, наиболее употребимой в радиотехнике. Она получается из вещественной формы представлением косинуса в виде полусуммы комплексных экспонент (такое представление вытекает из формулы Эйлера e jθ = Cosθ + jSinθ ):

Применив данное преобразование к вещественной форме ряда Фурье, получим суммы комплексных экспонент с положительными и отрицательными показателями:

А теперь будем трактовать экспоненты со знаком «минус» в показателе как члены ряда с отрицательными номерами. В рамках этого же общего подхода постоянное слагаемое a /2 станет членом ряда с нулевым номером. В результате получится комплексная форма записи ряда Фурье :

Формула расчета коэффициентов Ck ряда Фурье:

Если S ( t ) является четной функцией, коэффициенты ряда Ck будут чисто вещественными, а если S ( t ) — функция нечетная, коэффициенты ряда окажутся чисто мнимыми.

Совокупность амплитуд гармоник ряда Фурье часто называют амплитудным спектром, а совокупность их фаз – фазовым спектром.

Спектром амплитуд является действительная часть коэффициентов Ck ряда Фурье:

Re ( Ck ) – спектр амплитуд.

Спектр прямоугольных сигналов.

Рассмотрим сигнал в виде последовательности прямоугольных импульсов с амплитудой A , длительностью τ и периодом повторения T . Начало отсчета времени примем расположенным в середине импульса.

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые ak , равные:

Из формулы видно, что длительность импульсов и период их следования входят в нее не обособлено, а исключительно в виде отношения. Этот параметр – отношение периода к длительности импульсов – называют скважностью последовательности импульсов и обозначают буквой: g : g = T /τ. Введем этот параметр в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду Sin ( x )/ x :

Примечание: В зарубежной литературе вместо скважности используется обратная величина, называемая коэффициентом заполнения ( duty cycle ) и равная τ / T .

При такой форме записи становится хорошо видно, чему равно значение постоянного слагаемого ряда: поскольку при x → 0 Sin ( x )/ x →1, то

Теперь можно записать и само представление последовательности прямоугольных импульсов в виде ряда Фурье:

Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону Sin ( x )/ x .

График функции Sin ( x )/ x имеет лепестковый характер. Говоря о ширине этих лепестков, следует подчеркнуть, что для графиков дискретных спектров периодических сигналов возможны два варианта градуировки горизонтальной оси – в номерах гармоник и в частотах.

На рисунке градуировка оси соответствует номерам гармоник, а частотные параметры спектра нанесены на график с помощью размерных линий.

Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при k = ng имеем Sin ( π k / g ) = 0, если n ≠ 0). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов – в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

Расстояние по частоте между соседними гармониками равно частоте следования импульсов — 2 π / T . Ширина лепестков спектра, измеренная в единицах частоты, равна 2 π / τ, т.е. обратно пропорциональна длительности импульсов. Это проявление общего закона – чем короче сигнал, тем шире его спектр.

Вывод: для любого сигнала известны его разложения в ряд Фурье. Зная τ и T можем посчитать сколько гармоник нужно, чтобы передать мощность.

Методы анализа линейных систем с постоянными коэффициентами.

Задача в постановке:

Имеется линейная система (не зависит от амплитуды сигнала):

Необходимо записать дифференциальное уравнение для этой системы.

Это типичная задача электротехники. Имеется мощный способ решения данной задачи во временной области.

Порядок уравнения зависит от числа реактивных элементов.

Может быть записано в виде системы уравнений первой степени.

Схема состоит из резистора и конденсатора

(интегрирующая цепь). На вход подали сигнал X ( t ). Определить Y вых.

RC + UC = X ( t )

UC – является Y выхода, поэтому: RC + U ВЫХ. = X ( t )

Дальнейшее решение сводится к решению сначала однородного уравнения, а затем неоднородного.

Это решение немного упрощается при переводе из временной плоскости в другую плоскость комплексной переменной. Перевод из временной плоскости в комплексную плоскость производится прямым преобразованием Лапласа.

RCY ‘ + Y = X ( t )

Вычисляется разностное уравнение.

Прямое преобразование Лапласа.

Преобразование Лапласа — интегральное преобразование, связывающее функцию S ( p ) комплексного переменного (изображение) с функцией s ( x ) действительного переменного ( оригинал).

Преобразования Лапласа играют очень важную роль при исследовании систем, описываемых линейными дифференциальными уравнениями. С помощью прямого преобразования Лапласа можно перейти от дифференциальных уравнений к алгебраическим, решить их в алгебраической форме, а затем с помощью обратного преобразования получить искомый результат. Аналогичный результат достигается при решении линейных разностных уравнений при использовании аппарата Z — преобразования.

Прямое преобразование Лапласа осуществляется по формуле: , где — комплексная переменная , где σ — затухание.

Источник